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Abstract

Profile analysis is a multivariate statistical technique, which is the equivalent of multivariate analysis
of variance (MANOVA) for repeated measures. This technique is widely used by researchers in education,
psychology, and medicine for the non-orthogonal decomposition of observed scores into level and pattern
effects. A suite of procedures for decomposing observed scores into level and pattern effects and statistical
techniques utilizing these effects exists for the R programming language in the profileR package (Bulut
& Desjardins, 2018). This package includes routines to perform criterion-related profile analysis, profile
analysis via multidimensional scaling, moderated profile analysis, profile analysis by group, and a within-
person factor model to derive score profiles. This article showcases several of these methods, illustrating
their applications with various data sets included with the package. The profileR package is geared
towards researchers in the social sciences and medicine, with limited familiarity with R, and aims to
lower the entry to using these methods for this audience.

1 Introduction

A profile of test scores may arise from a single test consisting of multiple subtests, repeated assessments in a
classroom, parallel or alternate forms of a test, or a psychological instrument(s) that measures multiple latent
domains. For example, a test taker’s scores on a cognitive test battery (e.g., Visual Processing, Quantitative
Knowledge, Fluid Reasoning, and Short-Term Memory) can be considered a profile. Another profile might be
test scores on the SAT, a required exam for college admissions in the United States. Each test taker receives
three subscores for the math section of the SAT: Heart of Algebra, Problem Solving and Data Analysis, and
Passport to Advanced Math. These subscores can be used to create a profile of math skills. A profile can
consist of not only of an individual’s test scores but can also be aggregate or average test scores for a sample
or for a group. For example, profiles of male and female students on the SAT can demonstrate potential
college readiness differences between the two groups.

The suite of techniques known as profile analysis exists to help researchers and practitioners identify, quantify,
and interpret the extent to which individual test takers or groups of test takers show a distinct profile(s).
Profile analysis is utilized for both inter- and intra-individual interpretations of test scores and allows the
quantification of the degree of similarity between observed and expected test score profiles. Specifically, it
can be used to quantify the amount of variability associated with the level and pattern effects. To examine
the similarities/differences among test scores, profile analysis focuses on the decomposition, analysis, and
quantification of the elevation, variation, and configuration of test scores (Cronbach & Gleser, 1953; Stanton
& Reynolds, 2000). Throughout this manuscript, we will use test scores and variables interchangeably
depending on the context when describing profiles.

∗bulut@ualberta.ca (Corresponding author)
†cdesjardins@smcvt.edu

1



Several statistical frameworks either include or resemble profile analysis. The most common form of profile
analysis is repeated measures MANOVA where researchers investigate whether multiple measurements of a
set of variables from a single sample change over time. A more complex form of profile analysis relies on
a combination of multidimensional scaling and factor analysis (M. Davison & Kuang, 2000; M. Davison,
Kuang, & Kim, 1999; M. L. Davison, Gasser, & Ding, 1996). Cluster analysis is a related but distinct
technique. Cluster analysis involves the classification of individuals into groups based on the similarity of
their profile. In contrast, the methods in the profileR package focus on testing and understanding the
different components of an individual’s or group’s profile and not on classification.

The profileR package implements the profile analytic methods described, and developed, in Bulut (2013),
Bulut, Davison, and Rodriguez (2017), M. L. Davison (1994), M. L. Davison and Davenport (2002), and
M. L. Davison, Kim, and Close (2009) as well as various unpublished techniques. The suite of functions
available in the profileR package have been selected as they are the most commonly used techniques in the
context of profile analysis. In addition, we have implemented new methods from this field into profileR that
should of interest to applied researchers working with profiles. Our package aims to be a one-stop shop for
researchers utilizing profile analysis by consolidating these methods into a single R package and providing a
consistent and unified framework.

2 Principal methods available in profileR

2.1 Profile plots

A profile analysis typically begins with a graphical examination of the relative behavior of all the test scores
or variables in a profile. A profile plot can be created by plotting the sample means for each variable by
individuals, for a single group, or across multiple groups. To have a clear and meaningful graphical summary
of the variables in a profile, all of the variables must have the same units of measurement. For instance,
if test scores from a mathematics test have a range of 0 to 100 and test scores from a reading test have a
range of 0 to 50, then test scores from both tests must be rescaled to have the same range or transformed
into a z-score. In a typical profile plot, the average scores for each group or individual scores for each person
are plotted against the measured domains. Below we present the code to create the profile plot shown in
Figure 1.

data <- data.frame(Domain = factor(rep(c("Reading", "Math", "Science", "Social"), 2),
levels = c("Reading", "Math", "Science", "Social")),

Student = factor(c(1, 1, 1, 1, 2, 2, 2, 2)),
Score = c(35, 50, 40, 50, 70, 80, 70, 85))

ggplot(data, aes(x = Domain, y = Score, group = Student, shape = Student)) +
geom_line() + geom_point(size = 4, fill = "white") +
theme(panel.background = element_rect(fill = 'white', colour = 'black'),

panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
axis.text = element_text(size = 14),
axis.title = element_text(size = 15, face = "bold")) +

scale_y_continuous(name = "Score", limits = c(30, 90),breaks = seq(30, 90, 10)) +
geom_text(data = data, aes(x = Domain, y = Score, label = Score),

size = 5, vjust = -1.5)

Figure 1 presents test score profiles of two students on four content domains (reading, math, science, and
social skills) on a general aptitude test. One of the principal purposes for creating a profile plot is to assess
whether the profiles are parallel (i.e., whether the scores are similar to each other). In Figure 1, the lines
appear to be parallel across the four content domains. The profileplot function in profileR allows users to
quickly create a profile plot and additional functions are available in profileR that can be used to formally
test whether the profiles are parallel. These procedures will be described in more detail in the following
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sections.

Figure 1: A profile plot with two persons and four content domains.

2.2 Profile analysis for one sample

Often a researcher is interested in testing the equivalence of the means of the variables obtained from a
sample of individuals. For instance, a researcher can investigate whether students’ scores on a mathematics
assessment based on subdomains (e.g., algebra, geometry, and arithmetics) are similar. If students perform
differently across the subdomains, the researcher can test whether this variability is significant. To test
the equivalence of the means of the variables, separate univariate t-tests could be used for comparing every
possible pair of variables. Alternatively, one can conduct an overall test of difference between the variables
that minimizes the chance of committing a type I error and adjusts for the correlations among the variables.

Profile analysis for one sample can be performed using Hotelling’s T 2 which tests the null hypothesis that
the univariate means of the variables in a profile are equivalent. For this test, hypothesis testing proceeds
as follows:

H0 : µ = µ0 against Ha : µ 6= µ0 (1)

where µ is the vector of observed means from p variables, (µ = [µ1, µ2, . . . , µp]) and µ0 is the vector of
hypothesized means for p variables (µ0 = [µ0

1, µ
0
2, . . . , µ

0
p]). Equation 1 is equivalent to testing the null

hypothesis that all observed means are equal to their hypothesized means:

H0 :
µ1

µ0
1

=
µ2

µ0
2

= · · · = µp

µ0
p

= 1 (2)

against the alternative hypothesis that at least one of the observed means is different from its hypothesized
mean:
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Ha :
µj

µ0
j

6= 1 for at least one j ∈ {1, 2, . . . , p} (3)

Furthermore, instead of testing whether the ratios of the observed means over their hypothesized means are
equivalent to one, profile analysis can also be used for testing the null hypothesis that all of these ratios are
equivalent. After rejecting the null hypothesis in Equation 2, a second null hypothesis is often tested:

H0 :
µ1

µ0
1

=
µ2

µ0
2

= · · · = µp

µ0
p

. (4)

A profile analysis for one sample, as outlined above, can be easily carried out with the paos function in
profileR.

2.3 Assessing parallelism, equality, and flatness in a profile across group or time

Data collection involving multiple variables is not typically collected on a single group or at one time point
but on multiple groups or multiple occasions. In such situations, there is often interest in assessing various
features of a profile across the groups or time points:

1. Are the profiles parallel across groups or time points?

2. Do the profiles have equal levels across the groups or time points?

3. Are the profiles flat across the groups or time points?

Parallelism is the main test of interest in a profile analysis by group because the test of parallelism examines
whether each segment of a profile is identical. A segment refers to the difference in the values of the
same variables across multiple time points or the difference between multiple variables in a single time
point. Therefore, the segment is simply the slope of the line between the means of two adjacent variables.
Parallelism is assessed using a one-way MANOVA. If the null hypothesis of parallelism is rejected, there is
a significant interaction between group membership and the variables or group membership and the time
points (e.g., if a test is repeatedly administered). In other words, the amount of increase or decrease between
successive measurements of the variable is different for at least one of the groups.

Given that the profiles are parallel one typically tests equality of the levels, which examines whether the
profiles coincide (i.e., there are no group differences). This test is used for determining whether at least
one group scored higher than other groups, on average, across all the variables or time points. To evaluate
this, the grand mean of all time points or variables is calculated for each group. Since all of the time
points or variables are collapsed into a group mean, the resulting procedure becomes a univariate test and
a between-groups main effect in ANOVA is performed. The test simply measures the relative contributions
of between-group and within-group variations to the total sum of squared errors. Based on this test, if the
group levels are significantly different from one another, then the null hypothesis of equal levels is rejected.
That is, at least one group performs significantly higher or lower than the other groups based on the average
of p variables.

Flatness is a measure of the extent to which the profiles are flat within any group (i.e., there are no differences
in the average values of the variables or the average value of a single variable measured across multiple time
points), given that the profiles are parallel. The null hypothesis of flatness is that the segments are 0. This is
the analog to the profile analysis for one sample except for multiple groups or repeated measurements. Like
profile analysis for one sample, a Hotelling’s T 2 test can be used to test the difference of the zero-matrix and
the segmented data for each group as follows:

T 2 = N(X̄tot)
>(Swg)−1(X̄tot) (5)
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where X̄tot is the grand mean, N is the number of segments, and Swg is the within-group variance-covariance
matrix. Wilk’s λ can then be calculated from the T 2 statistic using the following equation:

λ =
1

1 + T 2
(6)

It should be noted that if parallelism is rejected, the other two tests (equal levels and flatness) are not
necessary. In that case, flatness may be assessed within each group, and various within- and between-group
contrasts may be analyzed. The pbg function (i.e., profile by group) implements three tests that correspond
to testing whether the profiles are parallel, have equal levels, and are flat across two groups or time points.
An example using pbg is presented below.

2.4 Profile analysis via multidimensional scaling (PAMS)

An exploratory latent variable technique to identify patterns in profiles is profile analysis via multidimensional
scaling (PAMS) (M. L. Davison, 1994). This approach examines the major profile patterns by estimating
latent profiles, unlike the previous methods which rely solely on observed scores. The PAMS model can be
more advantageous than other profile analytic methods because:

1. It can be used with any sample size.

2. Unlike the common factor model, it takes the person component into consideration when estimating
latent profiles.

3. It creates continuous person profile indices, rather than discrete categories, that represent the extent
that people possess a mixture of the various measured abilities/constructs/domains.

4. The latent person profile indices can be used either as predictors or criterion variables to describe
the relationships between individual profile patterns and other variables such as treatment outcomes
(Ding, 2001).

In the PAMS model, latent person profiles and person profile indices corresponding to the latent person
profiles are estimated simultaneously. Each person profile index represents the degree of similarity between
a person’s observed profile and each of their estimated latent profiles. An Euclidean space is created to
indicate the distance between each data point and the continuous dimensions (i.e., latent profile indices).
The PAMS model can be written as:

mij =
K∑

k=1

wikxjk + ci + eij , (7)

where mij is an observed score of person i on variable j (j = 1, . . . , J), wik is the person profile index that
indicates the distance between the observed profile of person i and the estimated latent profile k, xjk is the
scale value parameter that equals the scores of variables in latent profile k (k = 1, . . . ,K), ci is the profile
level (i.e., the average of J scores for person i), and eij is the error term representing measurement error and
systematic deviations from the model. As described above, wik, xjk, ci, and eji define a latent profile pattern
k that corresponds to a multidimensional scaling dimension (Ding, 2001). PAMS first finds the number of
latent profile dimensions (K), then estimates the scale value parameters (xjk) for each dimension, and finally
computes the person profile index (wik) and a measure of overall fit for the model.

The scale value parameters, xjk, represent a latent profile k with j scores. These parameters indicate
deviations from the profile level (i.e., the average latent score). The person profile index wik indicates how
closely a person reflects the latent profile k defined by the xjk values. The product of xjk and wik leads to
the profile patterns of persons that can be described as additional information above and beyond what the
profile level explains for each person. Unlike a typical ANOVA model, the analysis of a group of persons
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on a set of variables via profile analysis provides information that is not only based on the level but is also
based on the pattern.

In order to estimate the parameters defined in Equation 7, PAMS requires several assumptions and restric-
tions (M. L. Davison, 1996). First, the mean of the scores in each latent profile should equal zero (i.e.,
x̄jk = 0 for each k). Therefore, latent profiles can reproduce observed profile patterns, but not the level
of the observed profiles which is reproduced by the level parameters. Second, the number of dimensions or
latent profiles is user-defined based on theory, previous research, or statistical methods such as choosing the
solution with either a badness-of-fit index of .05 or less or the smallest badness of fit index (Ding, 2001).

Under these assumptions, the parameters in the PAMS model can be estimated by computing the squared
Euclidean distance matrix for all possible pairs of variables and one can then use this distance matrix to
perform a multidimensional scaling analysis (which is available in many major statistical programs). For
instance, the cmdscale function in R can analyze such data. This analysis produces one dimension for each
latent profile k, in which the scale value, xjk, for variable j is the estimate of the score for that variable in
latent profile (M. L. Davison, 1996; Ding, 2001).

The pams function, available in the profileR package, computes similarity/dissimilarity indices based on
Euclidean distances between the scores provided in the data and then extracts dimensional coordinates for
each score using multidimensional scaling.

2.5 Criterion-related profile analysis

When performing a profile analysis, there may be explicit interest in an external criterion or dependent
variable and understanding the proportion of variability in the criterion that can be explained by either the
level or the pattern effect. This type of profile analysis is referred to as criterion-related profile analysis
(M. L. Davison & Davenport, 2002) and is implemented in profileR with the cpa function.

Consider the interest data set from a hypothetical interest inventory. This data set contains scores on
cognitive and personality measures and interest in various professions. Imagine we are interested in pre-
dicting someone’s interest in being doctor given information about their cognitive abilities, specifically their
mathematical and verbal abilities. We might be interested in understanding if it is just having high cognitive
ability or a certain pattern that piques someone’s interest in being a doctor. We can answer this question
using a subset of the interest data set, which we will save as doctor.interest. The first few rows of the
doctor.interest data set are presented in Table 1 and can be created using the following code:

doctor.interest <- interest[, c(4:9, 28)]
head(doctor.interest)

Table 1: Hypothetical interest inventory. (Note: vocab = vocabulary test, reading = reading comprehension,
sentcomp = sentence completion, mathmtcs = mathematics, geometry = geometry, analyrea = analytical
reasoning, and doctor corresponds to interest in the doctor profession.)
vocab reading sentcomp mathmtcs geometry analyrea doctor
1.67 1.67 1.46 0.90 0.49 1.65 1.95
-1.19 -1.43 -1.19 -0.17 0.28 0.23 -0.50
1.56 1.11 2.25 1.40 1.85 2.04 0.69
-0.59 -0.03 0.12 0.05 -0.48 -0.17 -0.07
0.15 0.98 -0.05 0.20 -0.68 0.58 0.35
1.21 1.04 0.75 -0.01 -0.05 -0.37 1.04

If we wanted to predict individual p’s, interest in being a doctor, we may consider the following regression
model:
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Cp = β0 + β1XV p + β2XRp + β3XSp + β4XMp + β5XGp + β4XAp (8)

where the βs correspond to the intercept and slopes associated with our measures of cognition and XV . . . XA

correspond to the cognitive variables shown in Table 1 (i.e., vocab, . . . , analyrea). We can re-express this
equation in terms of the pattern and level effects, as follows:

Cp = β0 +

V∑

v=1

(βv − β̄)(Xvp −Xp̄) +

V∑

v=1

β̄Xp̄ (9)

where V corresponds to the number of cognitive measures (e.g., six in this example). The first sum corre-
sponds to the pattern of a test score profile, this vector is defined as the difference between person p’s score on
a test (Xvp for vp = vocab, . . . , analyrea) and their overall mean across the tests (Xp̄ = 1

v

∑V
v=1Xvp). The

pattern effect is multiplied by the difference between the estimated parameter associated with a particular
domain, βv, and the mean of these parameter estimates across the domains, β̄. The second summation term
is strictly a function of person p’s level, Xp̄. Further, M. L. Davison and Davenport (2002) show that this
equation can be re-expressed as:

Cp = β0 + (V/k)Covpc + V β̄Xp̄ (10)

where Covpc = (1/V )
∑V

v=1(Xvp −Xp̄)(kβv − kβ̄) is the covariance between the pattern effect and the scores
in the criterion-pattern vector, xc = k(βv− β̄), where k is some scalar greater than 0 and the other variables
were described above.

Rewriting the multiple regression of the criterion variable onto the cognitive measures in this fashion, allows
the calculation of the proportion of variability associated with the level and pattern effects, respectively, and
allows for the testing of several hypotheses which are described in the example below.

Criterion-related profile analysis in the profileR package is performed using the cpa function.

2.6 Profile reliability

The aim of a test battery is to obtain reliable scores that can be used to evaluate examinees’ skills for
diagnostic, classification, or selection purposes. The higher the reliability of the scores, the more precisely
we can evaluate examinees. If the purpose of an assessment is to use each test score to compare individuals,
then traditional reliability indices, such as coefficient alpha (Cronbach, 1951) and Kuder-Richardson 20
(Kuder, 1937) could be used.

Examining an individual’s strengths and weaknesses from pattern scores has brought some uncertainties
due to lack of evidence for reliability and validity of test scores (Watkins, Glutting, & Youngstrom, 2005).
Profile reliability is conceived of as a multivariate analog to the traditional definition of univariate reliability.
To estimate the precision of unique patterns of test score profiles, Bulut (2013) proposed an approach for
estimating the reliability of individual differences in test score profiles based upon the total variation, the
variation among individuals, and the variation among the test scores. This approach is an extension of
canonical test reliability originally proposed by Conger and Lipshitz (1973).

Conger and Lipshitz (1973) defined the observed difference vector (i.e., pattern) as Xi− X̄i; where Xi is the
vector of test scores for person i and X̄i is the average of person i’s scores (i.e., level). Using the observed
and true difference vectors, canonical reliability can be written for any distance function as:

ρp =
(Ti − T̄i)

>A(Ti − T̄i)

(Xi − X̄i)>A(Xi − X̄i)
, (11)
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where (Ti − T̄i) is the true difference vector and A is a square matrix used for weighting the reliability.
The square matrix A can either be a correlation matrix of the subscores on the test or an identity matrix if
weighting is not desired (Conger & Lipshitz, 1973).

Using the canonical reliability framework defined by Conger and Lipshitz (1973), Bulut (2013) presented a
profile reliability approach that made use of both the vector of difference scores and the vector of the average
score in a test score profile. The total score variation (T ) of a test score profile can be expressed as the sum
of the variances associated with these effects for V tests:

T = B +W, (12)

where the total variation (T ) is the sum of two orthogonal components: between-person variation (B) and
within-person variation (W ) (M. L. Davison et al., 2009). B corresponds to the level effect and W is
corresponds to the pattern effect. Essentially B is the between-person variation due to individual differences
in profile level and W is the within-person variation due to individual differences in profile patterns (Bulut,
2013; M. L. Davison et al., 2009).

To define reliability based on between-person variation and within-person variation, the relationship between
observed and true test scores in the classical test theory (CTT) framework can be used (Bulut, 2013). In
CTT, reliability is defined as the proportion of observed score variation that is attributable to true scores.
That is, the ratio of true score variation to observed score variation leads to a reliability index ranging from
0 to 1 where higher values indicate higher reliability.

If the total observed score variation is defined as the sum of the variances for V subtests, then the observed
total level variance becomes B = V ∗ σ2

X̄p
, where B is the observed total level variance and V is the number

of domains, subtests, variables, etc. Similarly, the true total level variance based on the true level value
becomes BT = V ∗ σ2

T̄p
; where σ2

T̄p
is the variance of true level scores and BT is the total true level variance.

Using the observed and true level variances, between-person reliability (ρB) can be defined as the ratio of
true level variation to observed level variation:

ρB =
BT

B
. (13)

Within-person reliability can be defined in a similar fashion. In a test score profile, the total observed pattern
variance is:

W =

V∑

v=1

[
1

P

P∑

p=1

(Xvp − X̄p)2

]
, (14)

where W represents the total observed within-person variation due to individual differences in the subscores.
Similarly, the total true pattern variance can be shown as:

WT =
V∑

v=1

[
1

P

P∑

p=1

(Tvp − T̄p)2

]
, (15)

whereWT is the total true within-person variation in the test score profile. By using the same approach with
the ratio of observed and true scores, within-person reliability can be defined as the ratio of true pattern
variation to observed pattern variation as follows:

ρB =
WT

W
. (16)
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The within-person reliability coefficient can be interpreted as the proportion of variation in observed profile
patterns that can be attributed to true pattern variation in the test score profile. Within-person reliability
can also be interpreted as a weighted average of the within-person reliability for each subtest and as a
weighted average of the person profile reliabilities.

As explained above, within-person and between-person reliability coefficients are based on the relationship
between true and observed scores in a test score profile. It is assumed in CTT that true scores are unknown
and observed scores are the approximations of true scores. When there are parallel forms of a test, the
covariance of the two forms provides an estimate of the true score variation. If true scores from two tests are
perfectly correlated (i.e., congeneric) and equally reliable, then the correlation between the observed scores
provides an estimate of the proportion of true score variance to observed score variance.

After obtaining an estimate of the covariance between every possible pair of parallel tests v and v′ , the true
score variation becomes equal to the average of all possible covariances because the tests v and v′ are assumed
to have equal variances. Based on the test scores from parallel test forms, within-person and between-person
reliability coefficients can be computed as follows:

ρ̂W =

∑P
p=1

(∑V
v=1(Xvp − X̄p)(Xvp′ − X̄p′)

)

∑P
p=1(

∑V
v=1(Xvp − X̄p)2

, (17)

and

ρ̂B =
σ̂(X̄pX̄p′)√
σ̂2(X̄p)σ̂2(X̄p′)

=
σ̄(X̄pX̄p′)

σ̂2(X̄p)
. (18)

Please note that the ′ refers to a parallel form of a test in Equations 17 and 18, not the transpose of a matrix.
The within-person reliability coefficient is a weighted average of within-person reliability coefficients from all
subtests. Without averaging over the subtests, within-person reliability coefficients can also be computed to
evaluate reliability for each subtest (for more details, see Bulut (2013)).

The pr function uses subscores from two parallel test forms and computes profile reliability coefficients.

3 Examples

A typical use of profileR to conduct a profile analysis may include using one or some of the aforementioned
functions to quantify variability associated with a particular effect, to test a profile hypothesis, to create a
profile plot, or to extract information for further analyses. The demonstration of the following functions are
intended to help researchers understand how they can use profileR to conduct a particular technique within
the profile analytic framework.

3.1 Profile analysis of nutrient data with Hotelling’s T2

Although it is not a testing-related data set, we begin by looking at the nutrient data set to demonstrate
the use of a one-sample profile analysis. This example shows an application of the profileR package outside
of a testing framework. The nutrient data set comes from a study of women’s nutrition commissioned by
the United States Department of Agriculture (USDA) in 1985. Nutrient intake was measured on a random
sample of 737 women aged 25-50 years. Five nutrients were measured: calcium, iron, protein, vitamin A and
vitamin C. In this example, we analyze the nutrient data set to test the two hypotheses: 1) that the ratios
of the five nutrients were equal to 1 and 2) to test if ratios of the nutrients were equivalent. In other words,
did the 737 women, on average, have the same amount of calcium, iron, protein, vitamin A and vitamin C
intakes.
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Because the variables in the data are not on the same scale, when we call the paos function we will pass the
argument scale=TRUE to standardize the variables. The following output shows the results of two hypothesis
test:

> paos(nutrient, scale = TRUE)

Profile Analysis for One Sample with Hotelling's T-Square:

T-Squared F df1 df2 p-value
Ho: Ratios of the means over Mu0=1 1392.347 276.9559 5 732 0
Ho: All of the ratios are equal to each other 1278.073 318.2159 4 733 0

The results indicate that both hypotheses should be rejected for the nutrient data. The first test rejects the
null hypothesis that the ratio of the mean intake over the recommended intake is equal to 1 for each nutrient,
while the second test rejects the null hypothesis that the ratio of the mean intake over the recommended
intake is the same for each nutrient (i.e., that the difference is 0). Note that failing to reject the first null
hypothesis renders the second hypothesis test meaningless. We conclude that the average intake for at least
one of these five nutrients is different from the rest. In order to know which nutrient(s) differ, post hoc
comparisons of the variables can be conducted.

3.2 Testing parallelism, equal levels, and flatness in the spouse data

A researcher might consider profile analysis by group if he or she wants to understand the interaction between
a grouping factor and a set of test scores from multiple tests in a single time point or tests scores from the
same test administered repeatedly. Once parallelism (i.e., group and test score interaction) is rejected, the
other two tests (i.e., equal levels and flatness) may help the researchers understand the reason behind group
differences.

In this example, we use the spouse data set that contains four rating scale items where 60 spouses (30
husbands and 30 wives) rated each other. The pbg function is used to test whether the profiles of husbands
and wives are parallel, have equal levels, and are flat.

> mod <- pbg(spouse[,1:4], spouse[,5], original.names = FALSE, profile.plot = TRUE)
> mod

Data Summary:
Husband Wife

v1 3.900000 3.833333
v2 3.966667 4.100000
v3 4.333333 4.633333
v4 4.400000 4.533333

The average scores on the four items for the husbands and wives are printed by default and because we set
profile.plot = TRUE then a profile plot is created (see Figure 2). In Figure 2, the lines appear to be largely
parallel across the four items although the direction of the mean difference in the first question is different
from the other three questions (i.e., husbands provided higher rates than wives). Overall, the means of the
four items are quite similar between the husbands and wives.

The summary function prints the findings of the three hypotheses corresponding to whether the profiles are
parallel, with equal levels, or flat. The output shows that assuming α = .05, the first and second hypotheses
were not rejected; however the third hypothesis was rejected. The results suggest that the profiles of husbands
and wives are parallel and have equal levels, but are not flat.
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Figure 2: Profile plot of the spouse dataset.

> summary(mod)
Call:
pbg(data = spouse[, 1:4], group = spouse[, 5], original.names = FALSE,

profile.plot = TRUE)

Hypothesis Tests:
$`Ho: Profiles are parallel`

Multivariate.Test Statistic Approx.F num.df den.df p.value
1 Wilks 0.8785726 2.579917 3 56 0.06255945
2 Pillai 0.1214274 2.579917 3 56 0.06255945
3 Hotelling-Lawley 0.1382099 2.579917 3 56 0.06255945
4 Roy 0.1382099 2.579917 3 56 0.06255945

$`Ho: Profiles have equal levels`
Df Sum Sq Mean Sq F value Pr(>F)

group 1 0.234 0.2344 1.533 0.221
Residuals 58 8.869 0.1529

$`Ho: Profiles are flat`
F df1 df2 p-value

1 24.82071 3 57 0.0001554491

3.3 Criterion-related profile analysis and cross-validation using the IPMMc
data set

The doctor.interest dataset that we created above will be used to demonstrate the use of the cpa function.
The cpa function calls the glm function and returns information about the level and pattern effects. For
the doctor.interest data, we want to understand whether the level and pattern of scores on a cognitive
assessment can predict someone’s interest in being a doctor. A typical call to cpa looks like:
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> mod <- cpa(doctor ~ ., data = doctor.interest)

and the cpa function will print the following by default:

> mod
Call:
cpa(formula = doctor ~ ., data = doctor.interest)

Coefficients

Call: glm(formula = formula, family = family, data = data, na.action = na.action)

Coefficients:
(Intercept) vocab reading sentcomp mathmtcs geometry analyrea

-0.04789 0.08834 0.05677 0.21794 0.18475 -0.14591 -0.03267

Degrees of Freedom: 249 Total (i.e. Null); 243 Residual
Null Deviance: 276
Residual Deviance: 241.4 AIC: 716.7

This output is similar to output of the glm function, and corresponds to the estimates of the parameters
defined in Equation 8. The proportion of variability associated with the model, the profile, and level can be
extracted from the mod object.

> mod$r2
R2

Full Model 0.125320
Pattern 0.030635
Level 0.096605

To test the proportion of variability in the criterion variable explained by the various components of the
model, a simple call with the anova function can be used. The anova function gives the following output
that shows a summary of the statistical tests:

> anova(mod)
Call:
cpa(formula = doctor ~ ., data = doctor.interest)

Analysis of Variance Table

df1 df2 F value Pr(>F)
R2.full = 0 6 243 5.802624 1.145210e-05
R2.pat = 0 5 243 1.535914 1.792564e-01
R2.lvl = 0 1 243 25.985292 6.919813e-07
R2.full = R2.lvl 5 243 1.595478 1.619787e-01
R2.full = R2.pat 1 243 26.304860 5.959596e-07

We see in this example that three of the four hypothesis tests were rejected. We reject the null hypothesis
that the proportion of variability in interest in begin a doctor explained by our full model is zero (R2.full
= 0); we fail to reject that the proportion of variability in interest in the doctor profession explained by the
pattern effect is significantly different than zero (R2.pat = 0); we reject that the level effect explains no
variability in someone’s interest in the doctor profession (R2.lvl = 0); we fail to reject that the proportion
of variability explained by the model is equal to the proportion of variability explained by the level effect
(R2.full = R2.lvl) and finally, we reject that the proportion of variability explained by the model is equal
to the proportion of variability explained by the pattern effect (R2.full = R2.pat). In this example, we
can conclude that that it is the overall level of aptitude and not the pattern of the scores on the cognitive
test that are associated with someone’s interested in the profession of medicine.
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Additional information can be extracted from the mod object by calling the summary function. This includes
the proportion of variability explained by the different effects, the level component, and the pattern compo-
nent. This information is omitted here because the pattern component would be a large matrix (250 rows
by 6 columns). Other useful information from the criterion-related profile analysis is stored in mod and the
contents of this object can be examined by running str(mod).

Finally, a cross-validation technique is also available for criterion-related profile analysis using the pcv func-
tion. The pcv cross-validation technique randomly splits the data into two equally sized samples and then
estimates the level and pattern effects in each sample.

3.4 An example of profile analysis via multidimensional scaling

In PAMS, the researcher’s main interest is the variation in the latent profiles of examinees, instead of the
examinees’ observed profiles. To demonstrate the use of the pams function, we will use a data set which
contains score profiles of six respondents to a hypothetical personality scale. Each score profile consists of
three scores from the neurotic, psychotic, and character disorder scales. The PS data include three types of
profile patterns: Linearly increasing, inverted V, and linearly decreasing. To preview the PS data:

> data("PS, package = "profileR"")
> head(PS)

Person Neu Psy CD
1 1 60 70 80
2 2 30 40 50
3 3 65 80 65
4 4 35 50 35
5 5 80 70 60
6 6 50 40 30

The first column in the PS data set is a person ID variable, and the remaining columns are scores from the
neurotic, psychotic, and character disorder scales respectively. Assuming that there are two latent dimensions
that can be extracted from the four scores in the PS data set, the pams function is called by:

> result <- pams(PS[, 2:4], dim = 2)
> print(result)
$weights.matrix

weight1 weight2 level R.sq
[1,] 1.5 0.00000 70 1
[2,] 1.5 0.00000 40 1
[3,] 0.0 2.12132 70 1
[4,] 0.0 2.12132 40 1
[5,] -1.5 0.00000 70 1
[6,] -1.5 0.00000 40 1

$dimensional.configuration
Dimension1 Dimension2

Neu -6.666667 -2.357023
Psy 0.000000 4.714045
CD 6.666667 -2.357023

The first part of the output shows a weight matrix that includes the subject correspondence weights for each
of the two latent dimensions that we hypothesized, level parameters, and the subject fit measure, which is
the proportion of variance in the subject’s actual profiles accounted for by the prototypical profiles. The
second part of the output shows a matrix that provides prototypical profiles of the two latent dimensions
extracted from the data.
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3.5 Profile reliability using the EEGS data set

We will use the EEGS data set to demonstrate the concept of profile reliability and how it works using the pr
function. The EEGS data set includes three subtests: quantitative 1 (Q1), quantitative 2 (Q2), and verbal
(V). For each subtest, there are two subscores that come from two parallel forms. The first six rows of the
data set can be viewed using the head function:

> head(EEGS)
Form1_Q1 Form2_Q1 Form1_Q2 Form2_Q2 Form1_V Form2_V

[1,] 2 0 2 0 0 0
[2,] 4 9 0 0 3 4
[3,] 4 3 8 6 27 27
[4,] 2 6 0 0 26 29
[5,] 7 4 3 2 8 6
[6,] 18 16 1 3 14 15

To compute between-person and within-person subscore reliability of the three subscores in the EEGS data
set, the pr function can be used as:

> result <- pr(EEGS[, c(1, 3, 5)], EEGS[, c(2, 4, 6)])
> print(result)
Subscore Reliability Estimates:

Estimate
Level 0.9245548
Pattern 0.9338338
Overall 0.9308374

In the output, level refers to between-person reliability, pattern refers to within-person reliability, and overall
refers to the total profile reliability which is the weighted average of between-person and within-person
reliability coefficients. In this example, the three subtests of EEGS indicate high levels of between-person
and within-person reliability. Calling plot(result) would return a scatter plot of the level values from the
two parallel forms.

4 Conclusions and future direction

The profileR package has been developed to provide researchers and partitioners in the social sciences and
medicine that are interested in using profile analysis with a suite of easily accessible and commonly employed
techniques for the R programming language without needing to worry about the underlying statistical model.
Currently there is no specialized software for profile analysis, although popular matrix languages — such
as PROC IML for the SAS and the Matrix Command Language in SPSS — can be used for programming
a profile analysis procedure. Because profile analysis is a multivariate statistical technique, any software
program capable of running multivariate analyses could be used. However, such an approach would require
additional, intermediate steps of data analysis. For instance, the pams function in the profileR package
performs profile analysis and multidimensional scaling together, whereas the same procedure would require
creating a dissimilarity matrix between variables using a matrix computation procedure and analyzing this
matrix using either the PROC MDS function in SAS, the mds function in R, or the ALSCAL function in SPSS.
Similarly, the cpa and pbg functions are capable of testing multiple hypotheses simultaneously, without
requiring the user to implement separate analyses.

In addition to the functions described above, the profileR package includes functions for a within-person
factor model to derive a score profile (M. L. Davison et al., 2009) (using the lavaan package Rosseel (2012))
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and experimental support for moderated profile analysis (based on unpublished work by Davison and Daven-
port). In future versions of profileR, we intend to expand the package to allow for multi-level profile analysis
(i.e., creating score profiles for test takers and schools while controlling for the inherent nesting of students
within classrooms and the testing of these effects separately), Bayesian profile analysis, and the addition of
increased graphical capabilities using the DiagrammeR package (Sveidqvist et al., 2015). We welcome all
contributions to the profileR package and would like to encourage the R community and practitioners in
this field to submit pull requests on the GitHub website to help steer the direction of profileR.

15



References
Bulut, O. (2013). Between-person and within-person subscore reliability: Comparison of unidimensional and

multidimensional irt models. (Unpublished doctoral dissertation). University of Minnesota.
Bulut, O., Davison, M. L., & Rodriguez, M. C. (2017). Estimating between-person and within-person

subscore reliability with profile analysis. Multivariate Behavioral Research, 52 (1), 86-104. doi: 10.1080/
00273171.2016.1253452

Bulut, O., & Desjardins, C. D. (2018). profiler: Profile analysis of multivariate data in r [Computer software
manual]. Retrieved from https://CRAN.R-project.org/package=profileR (R package version 0.3-
5)

Conger, A. J., & Lipshitz, R. (1973). Measures of reliability for profiles and test batteries. Psychometrika,
38 (3), 411–427.

Cronbach, L. J. (1951). Coefficient alpha and the internal structure of tests. Psychometrika, 16 (3), 297–334.
Cronbach, L. J., & Gleser, G. C. (1953). Assessing similarity between profiles. Psychological Bulletin, 50 (6),

456.
Davison, M., & Kuang, H. (2000). Profile patterns: Research and professional interpretation. School

Psychology Quarterly , 15 , 457–464.
Davison, M., Kuang, H., & Kim, S. (1999). The structure of ability profile patterns: A multidimensional

scaling perspective on the structure of intellect. In P. Ackerman, P. Kyllonen, & R. Roberts (Eds.),
Learning and individual differences: Process, trait, and content determinants (pp. 187–207). Washing-
ton, DC: American Psychological Association.

Davison, M. L. (1994). Multidimensional scaling models of personality responding. In S. Strack & M. Lorr
(Eds.), Differentiating normal and abnormal personality. Springer Publishing Co.

Davison, M. L. (1996). Addendum to multidimensional scaling and factor models of test and item responses.
(Unblished Report, Department of Educational Psychology, University of Minnesota)

Davison, M. L., & Davenport, E. C. (2002). Identifying criterion-related patterns of predictor scores using
multiple regression. Psychological Methods, 7 (4), 468–484.

Davison, M. L., Gasser, M., & Ding, S. (1996). Identifying major profile patterns in a population: An
exploratory study of wais and gatb patterns. Psychological Assessment , 8 , 26 – 31.

Davison, M. L., Kim, S. K., & Close, C. (2009). Factor analytic modeling of within person variation in score
profiles. Multivariate Behavioral Research, 44 , 668–687.

Ding, C. (2001). Profile analysis: Multidimensional scaling approach. Practical Assessment, Research &
Evaluation, 7 (16).

Kuder, M. W., G. F.and Richardson. (1937). The theory of the estimation of test reliability. Psychometrika,
2 (3), 151–160. Retrieved from http://dx.doi.org/10.1007/BF02288391 doi: 10.1007/BF02288391

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software,
48 (2), 1–36. Retrieved from http://www.jstatsoft.org/v48/i02/

Stanton, H. C., & Reynolds, C. R. (2000). Configural frequency analysis as a method of determining wechsler
profile types. School Psychology Quarterly , 15 (4), 434–448.

Sveidqvist, K., Bostock, M., Pettitt, C., Daines, M., Kashcha, A., & Iannone, R. (2015). Diagrammer:
Create graph diagrams and flowcharts using R [Computer software manual]. Retrieved from https://
github.com/rich-iannone/DiagrammeR (R package version 0.8.2)

Watkins, M. W., Glutting, J. J., & Youngstrom, E. A. (2005). Issues in subtest profile analysis. In F. DP
& H. PL (Eds.), Contemporary intellectual assessment: Theories, tests, and issues. (2nd ed., pp. 251
– 268). New York: Guilford Press.

16


